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B Abstract Recent studies suggest that there are multiple regulatory pathways
by which chondrocytes in articular cartilage sense and respond to mechanical stim-
uli, including upstream signaling pathways and mechanisms that may lead to direct
changes at the level of transcription, translation, post-translational modifications, and
cell-mediated extracellular assembly and degradation of the tissue matrix. This review
focuses on the effects of mechanical loading on cartilage and the resulting chondrocyte-
mediated biosynthesis, remodeling, degradation, and repair of this tissue. The effects
of compression and tissue shear deformation are compared, and approaches to the
study of mechanical regulation of gene expression are described. Of particular interest
regarding dense connective tissues, recent experiments have shown that mechanotrans-
duction is critically important in vivo in the cell-mediated feedback between physical
stimuli, the molecular structure of newly synthesized matrix molecules, and the result-
ing macroscopic biomechanical properties of the tissue.
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INTRODUCTION

During the past decade, increasing attention has focused on the ability of cells
and tissues to respond to mechanical forces and other physical stimuli in their
environment. Investigators have studied cellular mechanotransduction in a broad
range of soft (1-3) and hard (4, 5) connective tissues, epithelial and endothelial
tissues (6), and muscle (7). Significant advances have been made in the initial
understanding of transduction mechanisms (e.g. see 8 for review). However, many
of the unique mechanisms and associated responses to physical forces that are
observed in different cell types remain to be elucidated.

This review focuses on the effects of mechanical loading on cartilage, and
the resulting chondrocyte-mediated biosynthesis, remodeling, degradation, and
repair of this tissue. In addition, cartilage can be viewed as model biological
tissue in which cells within a dense extracellular matrix (ECM) are presented with
a complex combination of physical forces and flows (9—12) as well as biological
signaling factors. These physical stimuli and the resulting cellular responses should
be studied at the molecular, cellular, and tissue levels to fully understand the
feedback between applied macroscopic forces, ECM molecular structure, and the
resulting macrocontinuum tissue material properties (9, 13) —a feedback process
that is orchestrated by cells in vivo (e.g. 1).

Articular cartilage is subjected to a wide range of static and dynamic mechan-
ical loads in human synovial joints (14—16), with peak stress amplitudes reaching
10-20 MPa (100-200 atm) during activities such as stair climbing (17). Exper-
imental and theoretical studies show that cartilage compression of <15%—-45%
may occur in response to long-term or static loads within the physiological range
(14,18, 19). In contrast, compressions of only a few percent occur during short-
duration (high-frequency) loading. The ability of cartilage to withstand physio-
logical compressive, tensile, and shear forces depends on the composition and
structural integrity of its ECM. In turn, the maintenance of a functionally intact
ECM requires chondrocyte-mediated synthesis, assembly, and degradation of pro-
teoglycans (PGs), collagens, noncollagenous proteins and glycoproteins, and other
matrix molecules (20).

It is now well accepted that mechanical stimuli in the microenvironment of
the chondrocytes can significantly affect the synthesis and degradation of ma-
trix macromolecules. However, the cellular transduction mechanisms that govern
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chondrocyte response to mechanical stimuli are not well understood. Recent data
suggest that there are multiple regulatory pathways by which chondrocytes sense
and respond to mechanical stimuli, including upstream signaling pathways (6,
21-25) and mechanisms that may lead to direct changes at the level of tran-
scription (26-29), translation, and post-translational modifications (30-32) and
cell-mediated extracellular assembly and degradation of matrix (33-36). Corre-
spondingly, there may be multiple pathways by which physical stimuli can alter not
only the rate of matrix production, but the quality and functionality of newly syn-
thesized PGs, collagens, and other molecules. In this manner, specific mechanical
loading regimens may either enhance or compromise the ultimate biomechanical
function of cartilage.

SYSTEMS FOR THE STUDY OF CELLULAR MECHANISMS

The mechanisms by which chondrocytes respond to mechanical stimuli are difficult
to study in vivo. As a result, in vitro models such as cartilage explant and three-
dimensional chondrocyte/gel culture systems have become increasingly important
for two reasons: (a) these systems can preserve or emulate native tissue structure
and thereby enable quantitative correlations between mechanical and biological
parameters; and (b) cell-matrix interactions and chondrocyte gene expression can
be preserved in these systems (37-39). Geometrically defined explants can attain
steady-state levels of matrix synthesis and turnover, suitable for studying pertur-
bations caused by applied mechanical stimuli. Muir (40) recently emphasized the
important but complex role of the native ECM and chondrocyte-ECM interactions
in understanding the mechanisms of chondrocyte response to load. Of course, the
coupling between mechanical, electrical, and chemical forces and flows within
ECM may complicate the identification of specific physical stimuli, necessitat-
ing specialized experimental approaches. However, Muir (40), Parkkinen et al
(31), and others have cautioned that the use of isolated chondrocytes that are de-
pleted of natural matrix must be approached with care regarding the physiological
interpretation of such tests and the potential for chondrocyte dedifferentiation.
Therefore, three-dimensional agarose (37,41,42) and alginate (43—45) gel cul-
ture systems have been used to study phenomena such as chondrocyte phenotypic
expression, proliferation, and accumulation of a PG-rich ECM during long-term
culture.

Using such tissue and cell systems, investigators have studied the effects of
applied mechanical compression (load or displacement control), hydrostatic pres-
sure, physicochemical stimuli (pH and osmolarity), and electrical currents (for
recent reviews, see 46,47). Recently, a versatile apparatus for application of shear
and compression to tissue specimens has been designed and fabricated (48). The
instrument is housed in a standard incubator for long-term stimulation studies,
and it can be used with closed-loop feedback control of displacement, load, shear
angle, or torque (the shear modes incorporating a rotational platform). In such ex-
periments, explant or gel culture disks are tested within autoclavable polysulfone
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chambers such as those used previously (49, 50), which can be clamped into the
jaws of the apparatus.

EFFECTS OF STATIC AND DYNAMIC COMPRESSION

The application of mechanical compression directly to cartilage explants, by using
arange of amplitudes and frequencies, has been motivated by physiologically rel-
evant loading parameters. The metabolic response to compression in vitro shows
similar trends to those seen in animal studies: (a) static compression significantly
inhibits synthesis of PGs and proteins (49, 51-55), whereas (b) dynamic com-
pression can markedly stimulate matrix production (49, 56-61). The response
to dynamic compression, however, depends on compression frequency and am-
plitude. For example, biosynthesis in 3-mm-diameter explants was not affected
by low-strain-amplitude (1%—4%), unconfined compression at low frequency
(<0.001 Hz), whereas aggrecan and protein synthesis in these same explants was
stimulated by low strain amplitudes at higher frequencies [0.01-1 Hz (49)]. Most
studies have used bovine, canine, or other animal cartilages, although a few ex-
periments have demonstrated similar trends with human cartilage (52, 62).

Cellular and Intracellular Correlates

Several biophysical mechanisms may regulate the chondrocyte metabolic response
to these static and dynamic compression regimens. Static compression has been
shown to reduce the rate of transport of macromolecules from reduced average
ECM pore size (51), change local ion concentrations, including pH, in the pericel-
lular matrix via the Donnan effect (53, 63-65), and alter cell and nucleus structure
(66-68). In addition, the effects of tissue compression on the deformation of the
the matrix, chondrocytes, and nuclei have been studied to better understand the
possible role of cell shape/deformation on chondrocyte signal transduction. Using
Nomarski imaging (69, 70), confocal microscopy (67), and stereology of explant
specimens fixed after static and dynamic compression (68), investigators have
found that compression applied to the surfaces of cartilage specimens causes a
corresponding compression of the pericellular (70), as well as territorial and in-
terterritorial (67—69), matrix near and around the cells. In adult cartilage, columns
of chondrocyte-containing chondrons appear to be compacted at all depths (69, 70),
with accompanying loss of pericellular matrix volume and water content. These
observations are consistent with other studies (71) that demonstrate that the equi-
librium modulus of cartilage ECM is ~1000-fold larger than that of the chon-
drocyte; thus, cell deformation follows the imposed tissue deformation. Recent
studies (67, 68, 72) have shown that distinct changes in cell and nucleus shape are
produced by compression that is imposed at tissue surfaces. In general, compres-
sion caused flattening of the cells in the direction of loading and a decrease in cell
volume (66—68) and could also cause changes in cell surface area (68), nucleus
volume and height (68,72), and nucleus surface area (68). These changes vary
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with depth, the degree of anisotropy and inhomogeneity of the collagen network,
and the age of the tissue (73).

Kinetics of Chondrocyte Response: Clues to Mechanisms

Measurements of the rate at which chondrocytes can sense and respond to mechan-
ical stimuli can give valuable insight into intracellular regulatory mechanisms.
Previous studies have revealed that the inhibition of biosynthesis during static
compression can occur as rapidly as 1 h after application of compression (49, 74).
For example, newborn calf cartilage disks subjected to 35% compression from
their 1-mm-cut thickness showed an ~45% decrease in PG synthesis (sulfate ra-
diolabel incorporation) within 2 h, compared with uncompressed controls (75; see
Figure 3A below). In contrast, insulin-like growth factor 1 (IGF-1) at 300 ng/ml
stimulated PG synthesis by twofold in these uncompressed calf cartilage disks
after 24-48 h of exposure (see Figure 3A below), consistent with many previous
studies (76). However, disks simultaneously compressed and treated with IGF-1
at time ¢ = 0 showed an initial rapid decrease in biosynthesis by 2 h, followed by
a dramatic increase above baseline after 24 h. This intriguing bimodal response
kinetics suggests that the transduction mechanisms underlying the response to
mechanical compression and the signaling factor IGF-1 are regulated via inde-
pendent metabolic pathways. Thus, compression may regulate tissue response to
biological factors and vice versa (75). Recovery of biosynthesis after release of
static compression can be much slower than 1-2 h, and it depends on the duration
and amplitude of the static compression before release (49, 54,55, 74). After a 2-h
static compression followed by release, aggrecan synthesis recovered fully in an-
other 2 h (49, 74). In contrast, after release of a 12-h, 50%-static compression, 60 h
were necessary for biosynthesis to return to free-swelling levels. Over time, the
concentration of intracellular enzymes necessary for glycosylation and sulfation
may decrease, hence the longer time necessary for recovery of aggrecan synthesis
with increased duration of compression.

SPATTIAL PATTERNS OF EXTRACELLULAR-MATRIX
SYNTHESIS: Relationship to Physical Stimuli

Fields, Forces, and Flows: Poroelastic/Electromechanical
Models

During the past decades, much progress has been made in understanding the mag-
nitude and distribution of physical forces and flows in the neighborhood of the
chondrocyte within loaded cartilage. Experiments have shown that compression
of cartilage causes deformation of cells and matrix (50, 6770, 77, 78), hydrostatic
pressure gradients, fluid flow, streaming potentials and currents (9, 10, 79-81;
Figure 1), and physicochemical changes including altered matrix water content,
fixed charge density, mobile ion concentrations, and osmotic pressure (9, 53, 63, 64,
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UNLOADED COMPRESSION SHEAR

Figure 1 Schematic representation of loading regimes of articular cartilage. Dynamic compres-
sion of the extracellular matrix induces deformation of cells and matrix, hydrostatic pressure
gradients, and interstitial fluid flow. Fluid convection and separation of counterions from the fixed
charge groups of the proteoglycan constituents gives rise to electrical streaming potentials and
currents. In contrast, tissue shear deformation of a poroelastic tissue does not induce volumetric
changes, intratissue fluid flow, or pressure gradients.

82). Any of these mechanical, chemical, or electrical signals may modulate matrix
metabolism. An understanding of the spatial distribution of these forces and flows
at the tissue and even cellular length scales during compression of cartilage has
been aided by the development of theoretical models for mechanical, physico-
chemical, and electromechanical behavior of ECM (79, 83-86; for reviews, see
46,47,87). Such models can provide a useful framework for correlating the ob-
served spatial distributions of matrix synthesis with profiles of physical stimuli
that occur within cartilage explants during static and dynamic compression (e.g.
50,78, 80, 88).

Levenston et al recently developed a variational framework for describing cou-
pled mechanical, electrical, and chemical/osmotic phenomena in hydrated tissues
experiencing finite deformations (89-91), solved numerically by using the finite-
element method. Depending on the requirements of a given experiment, versions
of this formulation have been implemented that consider only mechanical behav-
ior (90), coupled mechanical and electrical behavior (89), and a general form
that considers intratissue flux of individual ionic and neutral solute species (91).
This approach includes consideration of tissue inhomogeneity and anisotropy in
a self-consistent manner; all material properties in the constitutive laws (mod-
ulus, permeability, conductivity, etc) are expressed as functions of both matrix
composition and deformation. Thus, material inhomogeneity may result from ma-
trix composition as well as strain-induced inhomogeneities caused by nonuniform
deformation fields.

As an example, the unconfined compression geometry (Figure 2A) that is of-
ten used in experiments involving mechanotransduction in cylindrical cartilage
disks that are subjected to static/dynamic compression has been modeled with an
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Figure 2 (A) Unconfined compression of a cylindrical disk specimen, which has been
modeled by an axisymmetric finite-element implementation (89). (B) The relative fluid
velocity profile in the upper quadrant of A at the end of a 60-sec-constant-velocity, 25 um
ramp compression of a 1-mm-thick disk that is 3 mm in diameter. (C) Current density profile
at the end of the ramp compression (see 89 for details). (D) Axial strain profile predicted
(89) for a statically compressed disk with depth-dependent equilibrium modulus (e.g. 92).

axisymmetric finite element implementation (Figure 2A). The predicted intratis-
sue profiles of compression-induced physical phenomena such as fluid pressure,
strain, relative fluid velocity (Figure 2B), and compression-induced current density
(Figure 2C) were compared to observed patterns of altered biosynthetic activity
in response to dynamic compression of cultured bovine cylindrical disks. Such
an approach was also used by Soulhat et al (86), who developed an analytical
fibril-reinforced composite poroelastic model of cartilage. Although the details
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of these theoretical models differ, the qualitative trends are similar; the fluid
velocity compared with the ECM is zero on axis (at » =0, by symmetry) and
generally increases with increasing distance toward the outer radial periphery of
the disks. Furthermore, at higher compression frequencies, the region of maxi-
mal fluid velocity becomes increasingly localized near the outer edge of the disk
specimen.

Spatial Patterns of Biosynthesis

To visualize the spatial profile of biosynthetic response to compression, Buschmann
et al (88) and Quinn et al (50) developed methods of quantitative autoradiography
that are applied at the tissue and cellular levels, respectively, with 1 pum length
scale resolution. At the tissue level, they discovered that stimulation of PG syn-
thesis in cartilage explants and cell/gel disks appeared with a spatial profile that
most closely matched the profile of intratissue fluid flow and matrix deformation
within the specimens. Thus, these physical stimuli appear to be critically im-
portant in regulating chondrocyte response to dynamic compression. Quinn et al
further discovered that the most dramatic stimulation of PG synthesis occurred
in the pericellular matrix region (50), which appears to be a very sensitive re-
gion in which mechanical stimuli can rapidly and directionally affect synthesis of
aggrecan.

The model of Levenston et al (90,91) also predicted the patterns of induced
electrical-streaming potentials, which were similar to those of the fluid pressure,
indicating that the macroscopic electrical potential is an unlikely tissue-level stim-
ulus in this system, although the electric field or potential gradient may be im-
portant. Thus, cyclic compression gave rise to an induced current density near
the edge of the explant (Figure 2C), which is proportional to the electric field
strength. This current density is a direct consequence of deformation-induced
inhomogeneities in the material properties, and it is not predicted by the homo-
geneous, infinitesimal-strain theory. Substantial depth-dependent variations in the
biosynthetic response to static compression have also been found to correlate with
local variations in tissue strains (78). Based on known depth-dependent material
properties (77, 92), finite-element models (89) that represent static compression of
a 1-mm full-thickness disk of inhomogeneous adult articular cartilage can exhibit
local strains that vary by an order of magnitude through the thickness (Figure 2D).

COMPRESSION-INDUCED FLUID FLOW
AND SOLUTE TRANSPORT

If convective transport is an operative metabolic stimulant during dynamic com-
pression of cartilage, it might act (a) by directly stimulating chondrocytes [e.g.
fluid shear at the cell surface (93)] or (b) by altering the pericellular concentrations
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of macromolecular cytokines, growth factors, degradative enzymes, endogenous
enzyme inhibitors, newly synthesized matrix macromolecules, or other nutri-
ents. Cohen et al (94) and O’Hara et al (95) measured the effects of static and
dynamic compression, respectively, on the partitioning and absorption of large
and small molecules into cartilage, including radiolabeled bovine serum albu-
min, IGF-1, urea, and sodium. They concluded that static compression affected
the transport of large solutes more than that of small solutes and that dynamic
compression enhanced the desorption of large solutes much more than that of
small solutes. The removal of PG could also increase the transport of large solutes
into cartilage (96). Recently, Garcia et al developed a new approach to quan-
tify the individual contributions of diffusion, convection, and electrical migra-
tion in the transport within cartilage of neutral and charged proteins and lower-
molecular-weight solutes (97,98). This approach enables quantification of the
effects of solute binding of transport within tissue (e.g. the binding of IGF-1 to
specific IGF binding proteins within cartilage matrix (98a). This approach also
allows direct measurement of radiolabeled solute diffusion, convection (by ap-
plication of an electric current to induce electroosmotic fluid flow within the
tissue), and electrical migration of charged solutes (which would occur in the
presence of streaming potential fields), by using fluid velocities of ~1 pm/s
[which corresponds to velocities obtained during normal walking frequencies
(99)]. The results confirmed that convective enhancement of transport is par-
ticularly important for larger solutes (97) and that protein flux within cartilage
could be greatly enhanced by fluid velocities that are relevant to physiologic
mechanical compression. For example, transport of '2°I-labeled IGF-1 and '*I-
labeled recombinant human—tissue inhibitor of metalloproteinase-1 were enhanced
by ~20- and 70-fold, respectively, above diffusion alone by fluid velocities of
~1-2 pum/s.

The implications of these studies were further explored by Bonassar et al (100),
who found that 300 ng/ml of IGF-1 alone increased protein synthesis by 90% in
calf cartilage disks and that dynamic compression alone increased protein synthe-
sis by 40% (Figure 3B). Once again, when applied together, these two different
classes of stimuli enhanced protein synthesis by 180% —2—4-fold greater than
that achieved by either stimulus alone. IGF-1 augmented protein synthesis with
a time constant of 12.2 h, whereas dynamic compression increased protein syn-
thesis with a time constant of 2.9 h, a rate significantly faster than that of IGF-1.
Indeed, in separate experiments with iodinated IGF-1, dynamic compression was
found directly to accelerate the transport of labeled IGF-1 into the tissue (100).
Together, these findings suggest that these signals act via distinct cell activation
pathways. When used in concert with IGF-1, dynamic compression accelerated
the biosynthetic response and the transport of the growth factor. This suggests that,
in addition to independently stimulating articular chondrocytes, cyclic compres-
sion may improve the access of soluble growth factors to these relatively isolated
cells.
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Figure 3 (A) 3°S-Sulfate incorporation as a measure of proteoglycan synthesis in carti-
lage explants that were removed from culture at 2, 4, 8, 24, or 48 h after simultaneous
exposure to 0 or 300 ng/ml of IGF-1 and were held at either 1.0-mm cut thickness or
0.65-mm compressed thickness (reproduced from 75, by permission of the publisher). (B)
3H-Proline radiolabel incorporation as a measure of total protein synthesis in cartilage disks
during a 2-h label terminating at 2, 4, 16, 24, and 48 h after treatment with IGF-1 and/or
imposition of a 2% sinusoidal strain at 0.1 Hz. Values are normalized to those of control
disks [0 ng/ml IGF-1 with no compression (reproduced from 100, by permission of the
publisher)].

TISSUE SHEAR

Joint loading in vivo results in a complex combination of compressive, tensile, and
shear deformations in cartilage. Although strong evidence suggests the importance
of compression-induced fluid flow in the stimulation of chondrocyte biosynthesis
(50, 88, 100), it is difficult to separate the effects of fluid flow from the associated
matrix deformation and cell/matrix interactions when using intact tissue explants.
Dynamic compression is particularly complex, inducing volumetric changes, shear
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stresses, and gradients in intratissue pressure and fluid flow (80; Figure 2). In
contrast, macroscopic shear deformation of a poroelastic tissue such as articular
cartilage should not induce volumetric changes, intratissue fluid flow, or pressure
gradients (Figure 1). Therefore, Jin et al (101) and Frank et al (48) applied direct
shear to explants to determine whether dynamic matrix and cell deformation (with-
out fluid flow) could stimulate cell metabolism. Such studies are directly aimed at
distinguishing the role of intratissue fluid flow and hydrostatic pressure gradients
from matrix and cell deformation.

With the incubator-housed tissue shear instrument described above, cartilage
explants maintained at their 1-mm cut thickness were subjected to a continuous
dynamic-shear deformation of 0.1 Hz and 1% shear strain amplitude for 24 h.
Matched control disks also maintained at 1-mm thickness for 24 h had no dynamic
shear deformation. During the entire 24-h loading period, disks were incubated
with 10 «Ci/ml S-sulfate and 20 Ci/ml *H-proline as measures of proteogly-
can and total protein synthesis. Both *>S-sulfate and *H-proline incorporation in
dynamically sheared disks were significantly higher (P < 0.002), by 25% and
41%, respectively, than in control disks held at the same static offset compression
(48,101; Figure 4). In separate experiments, the spatial distribution of radiola-
bel was analyzed by separating an inner core from an outer annular ring in each
explant by the methods of Kim et al (61). There was no significant difference in
biosynthesis between the inner core and annular rings of the dynamically sheared
samples, suggesting that matrix shear deformation, not fluid flow, was responsible
for metabolic stimulation. While investigators have examined the effects of fluid-
induced shear stress in monolayer cell culture (93, 102), the applied fluid velocities
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Figure 4 Sulfate and proline radiolabel incorporation (for proteoglycan and total pro-
tein synthesis) in cartilage disks subjected to dynamic tissue shear strain of 1% ampli-
tude at 0.1 Hz, compared with control disks maintained at the same static-offset com-
pressed thickness but with no dynamic shear (reproduced from 101, by permission of the
publisher).
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typically used in those studies have been many orders of magnitude higher than
the fluid velocities that are estimated to occur within cartilage in vivo. Experi-
ments such as those of Figure 4 can directly address the stimulatory potential of
macroscopic matrix shear (without associated fluid flow), and it appears that such
tissue shear can, indeed, regulate matrix biosynthesis. Ongoing studies by sev-
eral groups continue to explore the possibility that fluid shear can also affect the
chondrocytes.

MECHANOTRANSDUCTION: Intracellular Pathways
and Molecular Mechanisms

Gene Expression

In recent studies (26,28, 103), the effects of various mechanical forces on gene
expression were investigated by using chondrocytes in monolayer culture. For
example, static and intermittent hydrostatic pressure increased the expression of
transforming growth factor B, as well as aggrecan and type II collagen mRNA, in
high-density monolayer cultures (26,28). In addition, constant fluid shear forces
stimulated expression of mRNA for tissue inhibitor of metalloproteinase-1 in iso-
lated human chondrocytes grown in monolayer (93). Dynamic mechanical forces
have also been shown to influence matrix gene expression. When isolated bovine
and human chondrocytes are cyclically stretched on flexible membranes, aggrecan
and type II collagen mRNA expression is increased (103). Isolated chondrocyte
systems are useful models for investigating chondrocyte response to mechanical
load. However, extrapolating information obtained from isolated cells in mono-
layer culture to chondroctyes maintained in their native tissue is difficult owing to
the complex physicochemical interactions that exist between the chondrocyte and
the ECM in vivo (40).

Currently, there is limited information regarding the effects of compression
on chondrocyte gene expression within native articular cartilage. One study re-
ported that constant loads of 0.1 MPa applied for 1 h can transiently increase
levels of aggrecan mRNA (27) during creep compression of explants. Ragan et al
(104) recently found that chondrocyte expression of aggrecan and type-II collagen
decreased with increasing magnitude of a 24-h static compression (in displace-
ment control). However, total mRNA levels increased during the initial 0.5 h after
application of the step compression (Figure 5A), whereas rates of synthesis of
proteoglycans and collagen (Figure 5B) have been observed to decrease within
0.3 t0 0.6 h after static compression (49). Thus, although mechanical compression
can rapidly alter expression of these molecules, the observed decrease in synthesis
caused by static compression appears not to be related solely to changes in mRNA
expression. Using the techniques of Buschmann et al (105), Ragan et al (106)
also discovered that dynamic sinusoidal compression could up-regulate aggrecan
and type II collagen gene expression, using cartilage explants as well as isolated
chondrocytes that are cultured in alginate cylindrical disks.
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Figure 5 Aggrecan and type-II collagen gene expression and biosynthesis in response to
a static compression to 50% of cut thickness (reproduced from 92, by permission of the
publisher). (A) mRNA levels were quantified and normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as a function of time after step compression. (B) Sulfate and
proline radiolabel incorporation for PG and total protein synthesis as a function of time
after step compression, normalized to values of free-swelling controls at 24 h (see 104 for
details).

Compression Affects Translation and Post-Translational
Modifications of Extracellular Matrix Molecules

The rapid changes in synthesis of aggrecan after compression suggest that post-
transcriptional processes and not transcription alone are rate limiting. One ap-
proach to identifying mechanotransduction mechanisms that involve translation
and post-translational events is to study the differential effects of compression on
synthesis of specific matrix molecules (32,54, 107). The three molecular com-
ponents of the proteoglycan aggregate, for example, involve very different intra-
cellular biosynthetic pathways. Link protein, a typical glycoprotein, undergoes
a set of well-defined post-translational steps before its secretion from the cell.
On the other hand, the post-translational processing of aggrecan core protein is
spatially and temporally much more elaborate, requiring the sequential addition
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of N-linked oligosaccharides and the addition of chondroitin sulfate and keratan
sulfate glycosaminoglycan (GAG) chains (108). Synthesis of chondroitin sulfate
is initiated in the late endoplasmic reticulum and continued in the proximal regions
of the Golgi complex (108). In marked contrast to both aggrecan and link protein,
hyaluronan does not involve a protein precursor. Rather, hyaluronan is synthe-
sized at the plasma membrane by hyaluronate synthase and secreted directly into
the ECM (109).

Therefore, compression-induced alterations in the morphology and structure of
the rough endoplasmic reticulum and Golgi apparatus could have marked effects on
the form and function of newly synthesized matrix molecules such as aggrecan. For
example, Kim et al (32) found marked changes in GAG chain length, charge density
(sulfation), and spacing along the aggrecan core protein, which could be induced
by static compression. The ability for subtle changes in GAG charge density or
spacing along the core to cause significant changes in PG swelling pressure and
cartilage modulus has also been suggested by a recent micromechanical model for
GAG electromechanical interactions (110).

Ultrastructure and Morphology of Intracellular Organelles

Previous studies have shown that high pressure can cause changes in cell mor-
phology, disorganization of the Golgi and microtubules (30), and disappearance
of stress fibers (31) in chondrocytes that had spread on glass coverslips. Recently
we initiated a study of the effects of compression on the structure and morphol-
ogy of intracellular organelles including the rough endoplasmic reticulum, Golgi
complex, mitochondria, liposomes, glycogen granules, and lipid droplets. Calf
cartilage explants, which had been subjected to graded levels of static mechani-
cal compression, and specimens were fixed during static compression, embedded,
sectioned, and visualized by electron microscopy. The micrographs of Figures 6A
and B (see color insert) (low and high magnification) are from a cell within tissue
that was subjected to 20% static compression for 12 h (i.e. within the physiological
range of static comppression). Qualitatively, it is clear that static compression can
dramatically alter the morphology of organelles to the highly oriented anisotropic
ultrastructure shown in Figure 6B (see color insert) (111). The possibility that
such changes in organelle morphology could alter the location and activity of
intracellular enzymes, such as sulfotransferases (which are resposible for sulfa-
tion of chondroitin sulfate-GAG in the Golgi apparatus) is now being explored by
visualization with 2-photon microscopy (Figure 6C; see color insert).

INJURIOUS MECHANICAL LOADING AFFECTS CELL
VIABILITY AND MATRIX DEGRADATION

In osteoarthritis, cartilage matrix composition is altered substantially, which con-
siderably weakens the tissue to the extent that mechanical wear from joint motion
can result in erosion of cartilage down to the bone surface (112). Cartilage matrix



Figure 6 (A) Low and (B) high magnification of chondrocyte within a native cartilage
tissue disk subjected to 20% axial static unconfined compression, fixed, and visualized by
electron microscope. (B) Ordered, anisotropic morphology or rough endoplasmic reticulum
during compression, compared with the more istropic, randomly ordered distribution in
uncompressed controls (see 111 for details). (C) CHO cells showing green fluorescence
protein-6-sulfotransferase fusion protein transfected into cells and localized within rough
endoplasmic reticulum and Golgi apparatus, visualized by using two-photon fluorescence
microscopy.
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molecules are susceptible to degradation by several families of proteinases (113),
including metalloproteinases (114), serine proteinases (115), and the recently re-
ported aggrecanase family (116, 117). Acute mechanical overloads in vivo can
cause severe cartilage damage (118, 119). Recent studies in vitro have simulated the
effects of controlled impact loads on cartilage explants to assess matrix fissuring,
chondrocyte viability, and damage to the collagen and proteoglycan constituents
(35,36, 120-124). Other than acute destruction, the mechanisms by which me-
chanical forces in the joint may contribute to specific catabolic pathways for matrix
degradation remain to be elucidated. It is possible that mechanical compression
could alter enzymatic pathways and thereby the forms of the catabolic fragments
of aggrecan, link protein, hyaluronan, and collagen. For this reason, significant
effort has centered on the discovery of inhibitors of enzymatic degradation that
may preserve the biomechanical properties of cartilage ECM (125-127).

We recently developed models for controlled cell and matrix injury in vitro
(36, 124, 128) in which the strain, strain rate, or peak stress of compressive loads
onto cartilage explant disks could be servocontrolled. Induction of apoptosis at
theshhold levels of peak stress and strain rates were identified (124) by the termi-
nal deoxynucleotidyltransferase-mediated UTP end-labeling assay and measures
of cell and nucleus morphology. Injurious compression caused mechanical failure
of the collagen network (128), resulting in an ~30% increase in explant water
content and decreased unconfined compression stiffness (36, 124). However, con-
fined compression stiffness was not markedly diminished, indicating that the acute
effect of injurious compression was a partial disruption of the ECM, with the me-
chanical role of the collagen meshwork being most severely affected, whereas the
compressive strength of the PG gel remained largely intact. Cell-level quantitative
autoradiography revealed that the pericellular matrix surrounding cells in uncom-
pressed control disks exhibited the highest rates of PG assembly and turnover, but
the lowest rates of collagen deposition (36, 129). However, the remaining viable
cells in injuriously compressed disks appeared to mediate a more rapid loss of
PGs compared with controls. This increased release included aggregating species
in addition to a spectrum of degradation fragments, which were also present in
controls. Thus, mechanical injury to the cartilage ECM appeared to involve acute
compromise of collagen function followed by accelerated cell-mediated PG degra-
dation and release. The induction of chondrocyte apoptosis by threshold levels of
injurious compression is a novel finding, with implications for the ability of such
a damaged tissue and cell population to initiate a repair response. Apoptosis was
observed at peak stresses below the levels at which macroscopic ECM damage and
loss occurred. Follow-on studies are focusing on the effects of injurious loading
on gene expression on enzymes and ECM molecules.
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